MICA: A Multilinear ICA Decomposition for Natural Scene Modeling
We refine the classical independent component analysis (ICA) decomposition using a multilinear expansion of the probability density function of the source statistics. In particular, we introduce a specific nonlinear system that allows us to elegantly capture the statistical dependences between the r...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2008-03, Vol.17 (3), p.259-271 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We refine the classical independent component analysis (ICA) decomposition using a multilinear expansion of the probability density function of the source statistics. In particular, we introduce a specific nonlinear system that allows us to elegantly capture the statistical dependences between the responses of the multilinear ICA (MICA) filters. The resulting multilinear probability density is analytically tractable and does not require Monte Carlo simulations to estimate the model parameters. We demonstrate the MICA model on natural image textures and envision that the new model will prove useful for analyzing nonstationarity natural images using natural scene statistics models. |
---|---|
ISSN: | 1057-7149 1941-0042 |
DOI: | 10.1109/TIP.2007.916158 |