MICA: A Multilinear ICA Decomposition for Natural Scene Modeling

We refine the classical independent component analysis (ICA) decomposition using a multilinear expansion of the probability density function of the source statistics. In particular, we introduce a specific nonlinear system that allows us to elegantly capture the statistical dependences between the r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2008-03, Vol.17 (3), p.259-271
Hauptverfasser: Raj, R.G., Bovik, A.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We refine the classical independent component analysis (ICA) decomposition using a multilinear expansion of the probability density function of the source statistics. In particular, we introduce a specific nonlinear system that allows us to elegantly capture the statistical dependences between the responses of the multilinear ICA (MICA) filters. The resulting multilinear probability density is analytically tractable and does not require Monte Carlo simulations to estimate the model parameters. We demonstrate the MICA model on natural image textures and envision that the new model will prove useful for analyzing nonstationarity natural images using natural scene statistics models.
ISSN:1057-7149
1941-0042
DOI:10.1109/TIP.2007.916158