Dynamic Simulator for a PEM Fuel Cell System With a PWM DC/DC Converter

Polymer electrolyte membrane (PEM) fuel cells typically have low voltage, high current, terminal characteristics that cannot accommodate common electric loads like electric motors or power utility grids. Thus, a dc/dc converter is required to boost the output voltage of these power systems. Furtherm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on energy conversion 2008-06, Vol.23 (2), p.669-680
Hauptverfasser: Choe, Song-Yul, Ahn, Jong-Woo, Lee, Jung-Gi, Baek, Soo-Hyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Polymer electrolyte membrane (PEM) fuel cells typically have low voltage, high current, terminal characteristics that cannot accommodate common electric loads like electric motors or power utility grids. Thus, a dc/dc converter is required to boost the output voltage of these power systems. Furthermore, the terminal characteristics are dependent on loads and operating conditions of the fuel cell system. The continuously changing power demand of an electric load requires dynamically replenishing the air and fuel, by properly maintaining humidity in the cell and efficiently rejecting the heat produced. These factors present important challenges for the design of reliable and durable power systems. We present new dynamic models for a fuel cell system and a pulsewidth modulation dc/dc converter with associated controls and integration. The model for the system consists of three subsystems that include an PEM fuel cell stack, an air supply, and a thermal system. Four different controllers were designed to control the air, the coolant, and the output voltage of the converter, and to optimize the power flow between the fuel cell and the output capacitor. The integrated model with its controls was tested using a real-time simulator that reduced computational time and facilitated the analysis of the interactions between loads and the fuel cell components and also allowed the optimization of a power control strategy. The responses of a static and dynamic load show that the power controls proposed can coordinate two energy sources, resulting in improved dynamics and efficiency.
ISSN:0885-8969
1558-0059
DOI:10.1109/TEC.2007.914313