Radio-Over-Fiber 16-QAM, 100-km Transmission at 5 Gb/s Using DSB-SC Transmitter and Remote Heterodyne Detection

By using a double-sideband suppressed carrier (DSB-SC) optical transmitter and a remote self-heterodyned (RSH) detection method, we experimentally and analytically proved the feasibility of a radio-over-fiber system using a 16-QAM signal at 5 Gb/s and 18 GHz, with a transmission distance of 100 km b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of lightwave technology 2008-03, Vol.26 (6), p.643-653
Hauptverfasser: Chia-Kai Weng, Yu-Min Lin, Way, W.I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:By using a double-sideband suppressed carrier (DSB-SC) optical transmitter and a remote self-heterodyned (RSH) detection method, we experimentally and analytically proved the feasibility of a radio-over-fiber system using a 16-QAM signal at 5 Gb/s and 18 GHz, with a transmission distance of 100 km between a mobile service center and a base station. The transmission system performance was carefully analyzed by considering optical amplifier noise, fiber nonlinearity, phase noise, frequency response, and analog-to-digital converter (ADC) quantization noise. The 18-GHz, 16-QAM signal can be radiated from the base station to a remote antenna port without any upconverter, and the remote antenna port consists of a downconverter and high-speed digital signal processors (DSPs) to recover the 16-QAM signal. The high-speed DSP, which partially compensates the intersymbol-interference (ISI) and phase-noise-induced system penalties, was enabled by 20-Gs/s ADCs. The algorithms used in the DSP blocks were also described in details.
ISSN:0733-8724
1558-2213
DOI:10.1109/JLT.2007.912526