Excitation of airwaves caused by bubble bursting in a cylindrical conduit: Experiments and a model

Strombolian eruptions are considered to be a consequence of the bursting of a large bubble. In order to understand the relation between the style of bubble bursting and the resulting airwave, we perform experiments of bubble bursting at the top of the surface of viscous liquid contained in an acryli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research: Solid Earth 2010-10, Vol.115 (B10), p.n/a
Hauptverfasser: Kobayashi, Tsukasa, Namiki, Atsuko, Sumita, Ikuro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Strombolian eruptions are considered to be a consequence of the bursting of a large bubble. In order to understand the relation between the style of bubble bursting and the resulting airwave, we perform experiments of bubble bursting at the top of the surface of viscous liquid contained in an acrylic pipe which acts as an air column and observe it visually and acoustically. We find that when the liquid viscosity is less than 1 Pa s, the bubble vibrates before bursting. The major source of the airwave during the sequence of the bubble bursting is the bubble vibration. On the other hand, when the liquid viscosity is greater than 1 Pa s, the bubble does not vibrate. During bubble bursting, an aperture appears on the bubble film. The aperture growth first accelerates and later decelerates before finally stopping. The major source of the airwave is the aperture growth. We calculate a synthetic waveform of the airwave generated by the aperture growth which explains the experimentally observed airwave well. When the frequency of the airwave generated by the aperture growth matches the eigenfrequency of the air column, resonance occurs. Applying this model to the Strombolian eruption, the characteristic low frequency (
ISSN:0148-0227
2169-9313
2156-2202
2169-9356
DOI:10.1029/2009JB006828