Adaptive Robust Output-Feedback Control of a Magnetic Levitation System by K-Filter Approach

This paper proposes an adaptive robust output-feedback controller for the position-tracking problem of a magnetic levitation system with a current-feedback power amplifier. The system is governed by a single-input single-output second-order nonlinear differential equation which is different from the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) 2008-01, Vol.55 (1), p.390-399
Hauptverfasser: Zi-Jiang Yang, Kunitoshi, K., Kanae, S., Wada, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes an adaptive robust output-feedback controller for the position-tracking problem of a magnetic levitation system with a current-feedback power amplifier. The system is governed by a single-input single-output second-order nonlinear differential equation which is different from the standard output-feedback form, since there is a position-dependent nonlinear uncertainty multiplied by the control input. Only the position measurement is available for control. The controller is designed by a backstepping procedure with a robustifying modification of the conventional K-filter approach. The boundedness and the guaranteed transient performance of the error signals are achieved by the nonlinear damping terms, and the ultimate position-tracking error is reduced by the adaptive laws. Experimental results are included to show the excellent control performance of the designed controller.
ISSN:0278-0046
1557-9948
DOI:10.1109/TIE.2007.896488