A Historical Note on the Proof of the Area of a Circle
Proofs that the area of a circle is nr[superscript 2] can be found in mathematical literature dating as far back as the time of the Greeks. The early proofs, e.g. Archimedes, involved dividing the circle into wedges and then fitting the wedges together in a way to approximate a rectangle. Later more...
Gespeichert in:
Veröffentlicht in: | Journal of college teaching and learning 2011-03, Vol.8 (3), p.1 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Proofs that the area of a circle is nr[superscript 2] can be found in mathematical literature dating as far back as the time of the Greeks. The early proofs, e.g. Archimedes, involved dividing the circle into wedges and then fitting the wedges together in a way to approximate a rectangle. Later more sophisticated proofs relied on arguments involving infinite sequences and calculus. Generally speaking, both of these approaches are difficult to explain to unsophisticated non-mathematics majors. This paper presents a less known but interesting and intuitive proof that was introduced in the twelfth century. It discusses challenges that were made to the proof and offers simple rebuttals to those challenges. (Contains 6 diagrams.) |
---|---|
ISSN: | 1544-0389 2157-894X |
DOI: | 10.19030/tlc.v8i3.4119 |