Texture-based Transfer Functions for Direct Volume Rendering

Visualization of volumetric data faces the difficult task of finding effective parameters for the transfer functions. Those parameters can determine the effectiveness and accuracy of the visualization. Frequently, volumetric data includes multiple structures and features that need to be differentiat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics 2008-11, Vol.14 (6), p.1364-1371
Hauptverfasser: Caban, J.J., Rheingans, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Visualization of volumetric data faces the difficult task of finding effective parameters for the transfer functions. Those parameters can determine the effectiveness and accuracy of the visualization. Frequently, volumetric data includes multiple structures and features that need to be differentiated. However, if those features have the same intensity and gradient values, existing transfer functions are limited at effectively illustrating those similar features with different rendering properties. We introduce texture-based transfer functions for direct volume rendering. In our approach, the voxelpsilas resulting opacity and color are based on local textural properties rather than individual intensity values. For example, if the intensity values of the vessels are similar to those on the boundary of the lungs, our texture-based transfer function will analyze the textural properties in those regions and color them differently even though they have the same intensity values in the volume. The use of texture-based transfer functions has several benefits. First, structures and features with the same intensity and gradient values can be automatically visualized with different rendering properties. Second, segmentation or prior knowledge of the specific features within the volume is not required for classifying these features differently. Third, textural metrics can be combined and/or maximized to capture and better differentiate similar structures. We demonstrate our texture-based transfer function for direct volume rendering with synthetic and real-world medical data to show the strength of our technique.
ISSN:1077-2626
1941-0506
DOI:10.1109/TVCG.2008.169