Excursion set theory for generic moving barriers and non-Gaussian initial conditions
Excursion set theory, where density perturbations evolve stochastically with the smoothing scale, provides a method for computing the mass function of cosmological structures like dark matter haloes, sheets and filaments. The computation of these mass functions is mapped into the so-called first-pas...
Gespeichert in:
Veröffentlicht in: | Monthly notices of the Royal Astronomical Society 2011-04, Vol.412 (4), p.2587-2602 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Excursion set theory, where density perturbations evolve stochastically with the smoothing scale, provides a method for computing the mass function of cosmological structures like dark matter haloes, sheets and filaments. The computation of these mass functions is mapped into the so-called first-passage time problem in the presence of a moving barrier. In this paper we use the path-integral formulation of the excursion set theory developed recently to analytically solve the first-passage time problem in the presence of a generic moving barrier, in particular the barrier corresponding to ellipsoidal collapse. We perform the computation for both Gaussian and non-Gaussian initial conditions and for a window function which is a top-hat in wavenumber space. The expression of the halo mass function for the ellipsoidal collapse barrier and with non-Gaussianity is therefore obtained in a fully consistent way and it does not require the introduction of any form factor artificially derived from the Press-Schechter formalism based on the spherical collapse and usually adopted in the literature. |
---|---|
ISSN: | 0035-8711 1365-2966 |
DOI: | 10.1111/j.1365-2966.2010.18078.x |