Excursion set theory for generic moving barriers and non-Gaussian initial conditions

Excursion set theory, where density perturbations evolve stochastically with the smoothing scale, provides a method for computing the mass function of cosmological structures like dark matter haloes, sheets and filaments. The computation of these mass functions is mapped into the so-called first-pas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2011-04, Vol.412 (4), p.2587-2602
Hauptverfasser: De Simone, Andrea, Maggiore, Michele, Riotto, Antonio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Excursion set theory, where density perturbations evolve stochastically with the smoothing scale, provides a method for computing the mass function of cosmological structures like dark matter haloes, sheets and filaments. The computation of these mass functions is mapped into the so-called first-passage time problem in the presence of a moving barrier. In this paper we use the path-integral formulation of the excursion set theory developed recently to analytically solve the first-passage time problem in the presence of a generic moving barrier, in particular the barrier corresponding to ellipsoidal collapse. We perform the computation for both Gaussian and non-Gaussian initial conditions and for a window function which is a top-hat in wavenumber space. The expression of the halo mass function for the ellipsoidal collapse barrier and with non-Gaussianity is therefore obtained in a fully consistent way and it does not require the introduction of any form factor artificially derived from the Press-Schechter formalism based on the spherical collapse and usually adopted in the literature.
ISSN:0035-8711
1365-2966
DOI:10.1111/j.1365-2966.2010.18078.x