Dual Airborne Laser Scanners Aided Inertial for Improved Autonomous Navigation

A dead-reckoning terrain referenced navigation (TRN) system is presented that uses two airborne laser scanners (ALS) to aid an inertial navigation system (INS). The system uses aircraft autonomous sensors and is capable of performing the dual functions of mapping and navigation simultaneously. The p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on aerospace and electronic systems 2009-10, Vol.45 (4), p.1483-1498
Hauptverfasser: Vadlamani, A.K., de Haag, M.U.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A dead-reckoning terrain referenced navigation (TRN) system is presented that uses two airborne laser scanners (ALS) to aid an inertial navigation system (INS). The system uses aircraft autonomous sensors and is capable of performing the dual functions of mapping and navigation simultaneously. The proposed system can potentially serve as a backup to the Global Positioning System (GPS), increase the robustness of GPS or it can be used to coast for extended periods of time. Although the system has elements of a conventional TRN system, it does not require a terrain database since its in-flight mapping capability generates the terrain data for navigation. Hence, the system can be used in both non-GPS as well as unknown terrain environments. It is shown that the navigation system is dead-reckoning in nature since errors accumulate over time, unless the system can be reset periodically by the availability of geo-referenced terrain data or a position estimate from another navaid. Results of the algorithm using a combination of flight trajectory data and synthesized ALS data are presented.
ISSN:0018-9251
1557-9603
DOI:10.1109/TAES.2009.5310312