Iterative carrier-frequency offset estimation for generalized OFDMA uplink transmission

Maximum likelihood (ML) carrier-frequency offset (CFO) estimation for orthogonal frequency-division multiple-access (OFDMA) uplink with generalized carrier-assignment scheme (GCAS) is a complex multi-parameter estimation problem. The computational complexity of ML solution based on a multi-dimension...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on wireless communications 2009-03, Vol.8 (3), p.1373-1383
Hauptverfasser: Zhongjun Wang, Yan Xin, Mathew, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Maximum likelihood (ML) carrier-frequency offset (CFO) estimation for orthogonal frequency-division multiple-access (OFDMA) uplink with generalized carrier-assignment scheme (GCAS) is a complex multi-parameter estimation problem. The computational complexity of ML solution based on a multi-dimensional exhaustive search is prohibitive. The existing sub-optimal solutions reduce the complexity by replacing the multi-dimensional search with a sequence of single-dimensional searches. However, these solutions suffer from either poor estimation accuracy or being still of fairly high complexity. In this paper, we propose a new approach called divide-and-update frequency estimator (DUFE), for CFO estimation. Compared with the existing approaches, the proposed DUFE has lower computational complexity while maintaining high estimation accuracy similar to that of the exact ML solution. Performance and complexity comparisons are provided, along with numerical results to illustrate the effectiveness of the proposed method.
ISSN:1536-1276
1558-2248
DOI:10.1109/TWC.2009.080028