RoleNet: Movie Analysis from the Perspective of Social Networks

With the idea of social network analysis, we propose a novel way to analyze movie videos from the perspective of social relationships rather than audiovisual features. To appropriately describe role's relationships in movies, we devise a method to quantify relations and construct role's so...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on multimedia 2009-02, Vol.11 (2), p.256-271
Hauptverfasser: Weng, Chung-Yi, Chu, Wei-Ta, Wu, Ja-Ling
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With the idea of social network analysis, we propose a novel way to analyze movie videos from the perspective of social relationships rather than audiovisual features. To appropriately describe role's relationships in movies, we devise a method to quantify relations and construct role's social networks, called RoleNet. Based on RoleNet, we are able to perform semantic analysis that goes beyond conventional feature-based approaches. In this work, social relations between roles are used to be the context information of video scenes, and leading roles and the corresponding communities can be automatically determined. The results of community identification provide new alternatives in media management and browsing. Moreover, by describing video scenes with role's context, social-relation-based story segmentation method is developed to pave a new way for this widely-studied topic. Experimental results show the effectiveness of leading role determination and community identification. We also demonstrate that the social-based story segmentation approach works much better than the conventional tempo-based method. Finally, we give extensive discussions and state that the proposed ideas provide insights into context-based video analysis.
ISSN:1520-9210
1941-0077
DOI:10.1109/TMM.2008.2009684