Robust Camera Calibration and Player Tracking in Broadcast Basketball Video

With the growth of fandom population, a considerable amount of broadcast sports videos have been recorded, and a lot of research has focused on automatically detecting semantic events in the recorded video to develop an efficient video browsing tool for a general viewer. However, a professional spor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on multimedia 2011-04, Vol.13 (2), p.266-279
Hauptverfasser: HU, Min-Chun, CHANG, Ming-Hsiu, WU, Ja-Ling, LIN CHI
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With the growth of fandom population, a considerable amount of broadcast sports videos have been recorded, and a lot of research has focused on automatically detecting semantic events in the recorded video to develop an efficient video browsing tool for a general viewer. However, a professional sportsman or coach wonders about high level semantics in a different perspective, such as the offensive or defensive strategy performed by the players. Analyzing tactics is much more challenging in a broadcast basketball video than in other kinds of sports videos due to its complicated scenes and varied camera movements. In this paper, by developing a quadrangle candidate generation algorithm and refining the model fitting score, we ameliorate the court-based camera calibration technique to be applicable to broadcast basketball videos. Player trajectories are extracted from the video by a CamShift-based tracking method and mapped to the real-world court coordinates according to the calibrated results. The player position/trajectory information in the court coordinates can be further analyzed for professional-oriented applications such as detecting wide open event, retrieving target video clips based on trajectories, and inferring implicit/explicit tactics. Experimental results show the robustness of the proposed calibration and tracking algorithms, and three practicable applications are introduced to address the applicability of our system.
ISSN:1520-9210
1941-0077
DOI:10.1109/TMM.2010.2100373