Electronic System-Level Synthesis Methodologies

With ever-increasing system complexities, all major semiconductor roadmaps have identified the need for moving to higher levels of abstraction in order to increase productivity in electronic system design. Most recently, many approaches and tools that claim to realize and support a design process at...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computer-aided design of integrated circuits and systems 2009-10, Vol.28 (10), p.1517-1530
Hauptverfasser: Gerstlauer, A., Haubelt, C., Pimentel, A.D., Stefanov, T.P., Gajski, D.D., Teich, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With ever-increasing system complexities, all major semiconductor roadmaps have identified the need for moving to higher levels of abstraction in order to increase productivity in electronic system design. Most recently, many approaches and tools that claim to realize and support a design process at the so-called electronic system level (ESL) have emerged. However, faced with the vast complexity challenges, in most cases at best, only partial solutions are available. In this paper, we develop and propose a novel classification for ESL synthesis tools, and we will present six different academic approaches in this context. Based on these observations, we can identify such common principles and needs as they are leading toward and are ultimately required for a true ESL synthesis solution, covering the whole design process from specification to implementation for complete systems across hardware and software boundaries.
ISSN:0278-0070
1937-4151
DOI:10.1109/TCAD.2009.2026356