Tuning of Phase-Locked Loops for Power Converters Under Distorted Utility Conditions
This paper presents a novel approach in the tuning of phase-locked loops (PLLs) for power electronic converters. PLLs are implemented inside a higher level controller to estimate the grid-voltage phase angle and then control the energy transfer between the power converter and the AC mains. The tunin...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industry applications 2009-11, Vol.45 (6), p.2039-2047 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents a novel approach in the tuning of phase-locked loops (PLLs) for power electronic converters. PLLs are implemented inside a higher level controller to estimate the grid-voltage phase angle and then control the energy transfer between the power converter and the AC mains. The tuning of the PLL is not a trivial task, particularly when considering power-quality phenomena. In a general way, PLLs with a low bandwidth (low-gain PLLs) are required when handling distorted voltages. It is analytically demonstrated in this paper that low-gain PLLs have more tradeoffs than high-gain PLLs (e.g., PLLs for communications); it is not possible to optimize the settling time for a phase jump without making slower the PLL response to frequency variations. Existing tuning methods do not take into account low-gain features, which may result in nonoptimum designs. The proposed PLL tuning methodology is based on inspection of frequency-domain diagrams and, contrary to the other existing tuning methods, takes into account ldquolow-gainrdquo dynamics. It assures an optimized performance in the presence of any kind of disturbances in the grid. From a practical point of view, the proposed tuning procedure is very intuitive for controller designs. Some significant design examples and experimental results, obtained from a discrete implementation (dSpace platform), are provided in order to validate the theoretical approaches. |
---|---|
ISSN: | 0093-9994 1939-9367 |
DOI: | 10.1109/TIA.2009.2031790 |