Robustness Issues of the Best Linear Approximation of a Nonlinear System
In many engineering applications, linear models are preferred, even if it is known that the system is disturbed by nonlinear distortions. A large class of nonlinear systems, which are excited with a ldquoGaussianrdquo random excitation, can be represented as a linear system G BLA plus a nonlinear no...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on instrumentation and measurement 2009-05, Vol.58 (5), p.1737-1745 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In many engineering applications, linear models are preferred, even if it is known that the system is disturbed by nonlinear distortions. A large class of nonlinear systems, which are excited with a ldquoGaussianrdquo random excitation, can be represented as a linear system G BLA plus a nonlinear noise source Y S . The nonlinear noise source represents that part of the output that is not captured by the linear approximation. In this paper, it is shown that the best linear approximation G BLA and the power spectrum S Y S of the nonlinear noise source Y S are invariants for a wide class of excitations with a user-specified power spectrum. This shows that the alternative ldquolinear representationrdquo of a nonlinear system is robust, making its use in the daily engineering practice very attractive. This result also opens perspectives to a new generation of dynamic system analyzers that also provide information on the nonlinear behavior of the tested system without increasing the measurement time. |
---|---|
ISSN: | 0018-9456 1557-9662 |
DOI: | 10.1109/TIM.2009.2012948 |