On the Evolution of Convex Hypersurfaces by the Qk Flow
We prove the existence and uniqueness of a C1, 1 solution of the Qk flow in the viscosity sense for compact convex hypersurfaces Σt embedded in Rn+1 (n ≥ 2). The solution exists up to the time T < ∞ at which the enclosed volume becomes zero. In particular, for compact convex hypersurfaces with fl...
Gespeichert in:
Veröffentlicht in: | Communications in partial differential equations 2010-03, Vol.35 (3), p.415 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 415 |
container_title | Communications in partial differential equations |
container_volume | 35 |
creator | Caputo, M Cristina Daskalopoulos, Panagiota Sesum, Natasa |
description | We prove the existence and uniqueness of a C1, 1 solution of the Qk flow in the viscosity sense for compact convex hypersurfaces Σt embedded in Rn+1 (n ≥ 2). The solution exists up to the time T < ∞ at which the enclosed volume becomes zero. In particular, for compact convex hypersurfaces with flat sides we show that, under a certain non-degeneracy initial condition, the interface separating the flat from the strictly convex side, becomes smooth, and it moves by the Qk-1 flow at least for a short time. |
doi_str_mv | 10.1080/03605300903296314 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_856795154</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2291291571</sourcerecordid><originalsourceid>FETCH-LOGICAL-p182t-5e1f24160fef9eb64a8bfda226f655b59582abc65228210ed3069558a840c8473</originalsourceid><addsrcrecordid>eNotjV1LwzAUhoMoWDd_gHfB--rJSU6aXErZnDAYgrseaZegszS1aaf799aPq_fifXgexm4E3AkwcA9SA0kACxKtlkKdsUyQxFwJKc9Z9vPnE4CX7CqlA4AwaFXGik3Lh1fPF8fYjMNbbHkMvIzt0X_x1anzfRr74GqfeHX6BZ_f-bKJn3N2EVyT_PX_zth2uXgpV_l68_hUPqzzbgoMOXkRUAkNwQfrK62cqcLeIeqgiSqyZNBVtSZEgwL8XoK2RMYZBbVRhZyx2z9v18eP0adhd4hj307JnSFdWBKk5DcTZ0Zo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>856795154</pqid></control><display><type>article</type><title>On the Evolution of Convex Hypersurfaces by the Qk Flow</title><source>Taylor & Francis Journals Complete</source><creator>Caputo, M Cristina ; Daskalopoulos, Panagiota ; Sesum, Natasa</creator><creatorcontrib>Caputo, M Cristina ; Daskalopoulos, Panagiota ; Sesum, Natasa</creatorcontrib><description>We prove the existence and uniqueness of a C1, 1 solution of the Qk flow in the viscosity sense for compact convex hypersurfaces Σt embedded in Rn+1 (n ≥ 2). The solution exists up to the time T < ∞ at which the enclosed volume becomes zero. In particular, for compact convex hypersurfaces with flat sides we show that, under a certain non-degeneracy initial condition, the interface separating the flat from the strictly convex side, becomes smooth, and it moves by the Qk-1 flow at least for a short time.</description><identifier>ISSN: 0360-5302</identifier><identifier>EISSN: 1532-4133</identifier><identifier>DOI: 10.1080/03605300903296314</identifier><language>eng</language><publisher>Philadelphia: Taylor & Francis Ltd</publisher><subject>Partial differential equations</subject><ispartof>Communications in partial differential equations, 2010-03, Vol.35 (3), p.415</ispartof><rights>Copyright Taylor & Francis Ltd. Mar 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Caputo, M Cristina</creatorcontrib><creatorcontrib>Daskalopoulos, Panagiota</creatorcontrib><creatorcontrib>Sesum, Natasa</creatorcontrib><title>On the Evolution of Convex Hypersurfaces by the Qk Flow</title><title>Communications in partial differential equations</title><description>We prove the existence and uniqueness of a C1, 1 solution of the Qk flow in the viscosity sense for compact convex hypersurfaces Σt embedded in Rn+1 (n ≥ 2). The solution exists up to the time T < ∞ at which the enclosed volume becomes zero. In particular, for compact convex hypersurfaces with flat sides we show that, under a certain non-degeneracy initial condition, the interface separating the flat from the strictly convex side, becomes smooth, and it moves by the Qk-1 flow at least for a short time.</description><subject>Partial differential equations</subject><issn>0360-5302</issn><issn>1532-4133</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNotjV1LwzAUhoMoWDd_gHfB--rJSU6aXErZnDAYgrseaZegszS1aaf799aPq_fifXgexm4E3AkwcA9SA0kACxKtlkKdsUyQxFwJKc9Z9vPnE4CX7CqlA4AwaFXGik3Lh1fPF8fYjMNbbHkMvIzt0X_x1anzfRr74GqfeHX6BZ_f-bKJn3N2EVyT_PX_zth2uXgpV_l68_hUPqzzbgoMOXkRUAkNwQfrK62cqcLeIeqgiSqyZNBVtSZEgwL8XoK2RMYZBbVRhZyx2z9v18eP0adhd4hj307JnSFdWBKk5DcTZ0Zo</recordid><startdate>201003</startdate><enddate>201003</enddate><creator>Caputo, M Cristina</creator><creator>Daskalopoulos, Panagiota</creator><creator>Sesum, Natasa</creator><general>Taylor & Francis Ltd</general><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201003</creationdate><title>On the Evolution of Convex Hypersurfaces by the Qk Flow</title><author>Caputo, M Cristina ; Daskalopoulos, Panagiota ; Sesum, Natasa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p182t-5e1f24160fef9eb64a8bfda226f655b59582abc65228210ed3069558a840c8473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Partial differential equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caputo, M Cristina</creatorcontrib><creatorcontrib>Daskalopoulos, Panagiota</creatorcontrib><creatorcontrib>Sesum, Natasa</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Communications in partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caputo, M Cristina</au><au>Daskalopoulos, Panagiota</au><au>Sesum, Natasa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Evolution of Convex Hypersurfaces by the Qk Flow</atitle><jtitle>Communications in partial differential equations</jtitle><date>2010-03</date><risdate>2010</risdate><volume>35</volume><issue>3</issue><spage>415</spage><pages>415-</pages><issn>0360-5302</issn><eissn>1532-4133</eissn><abstract>We prove the existence and uniqueness of a C1, 1 solution of the Qk flow in the viscosity sense for compact convex hypersurfaces Σt embedded in Rn+1 (n ≥ 2). The solution exists up to the time T < ∞ at which the enclosed volume becomes zero. In particular, for compact convex hypersurfaces with flat sides we show that, under a certain non-degeneracy initial condition, the interface separating the flat from the strictly convex side, becomes smooth, and it moves by the Qk-1 flow at least for a short time.</abstract><cop>Philadelphia</cop><pub>Taylor & Francis Ltd</pub><doi>10.1080/03605300903296314</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-5302 |
ispartof | Communications in partial differential equations, 2010-03, Vol.35 (3), p.415 |
issn | 0360-5302 1532-4133 |
language | eng |
recordid | cdi_proquest_journals_856795154 |
source | Taylor & Francis Journals Complete |
subjects | Partial differential equations |
title | On the Evolution of Convex Hypersurfaces by the Qk Flow |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A05%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Evolution%20of%20Convex%20Hypersurfaces%20by%20the%20Qk%20Flow&rft.jtitle=Communications%20in%20partial%20differential%20equations&rft.au=Caputo,%20M%20Cristina&rft.date=2010-03&rft.volume=35&rft.issue=3&rft.spage=415&rft.pages=415-&rft.issn=0360-5302&rft.eissn=1532-4133&rft_id=info:doi/10.1080/03605300903296314&rft_dat=%3Cproquest%3E2291291571%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=856795154&rft_id=info:pmid/&rfr_iscdi=true |