On the Evolution of Convex Hypersurfaces by the Qk Flow
We prove the existence and uniqueness of a C1, 1 solution of the Qk flow in the viscosity sense for compact convex hypersurfaces Σt embedded in Rn+1 (n ≥ 2). The solution exists up to the time T < ∞ at which the enclosed volume becomes zero. In particular, for compact convex hypersurfaces with fl...
Gespeichert in:
Veröffentlicht in: | Communications in partial differential equations 2010-03, Vol.35 (3), p.415 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove the existence and uniqueness of a C1, 1 solution of the Qk flow in the viscosity sense for compact convex hypersurfaces Σt embedded in Rn+1 (n ≥ 2). The solution exists up to the time T < ∞ at which the enclosed volume becomes zero. In particular, for compact convex hypersurfaces with flat sides we show that, under a certain non-degeneracy initial condition, the interface separating the flat from the strictly convex side, becomes smooth, and it moves by the Qk-1 flow at least for a short time. |
---|---|
ISSN: | 0360-5302 1532-4133 |
DOI: | 10.1080/03605300903296314 |