On the Evolution of Convex Hypersurfaces by the Qk Flow

We prove the existence and uniqueness of a C1, 1 solution of the Qk flow in the viscosity sense for compact convex hypersurfaces Σt embedded in Rn+1 (n ≥ 2). The solution exists up to the time T < ∞ at which the enclosed volume becomes zero. In particular, for compact convex hypersurfaces with fl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in partial differential equations 2010-03, Vol.35 (3), p.415
Hauptverfasser: Caputo, M Cristina, Daskalopoulos, Panagiota, Sesum, Natasa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove the existence and uniqueness of a C1, 1 solution of the Qk flow in the viscosity sense for compact convex hypersurfaces Σt embedded in Rn+1 (n ≥ 2). The solution exists up to the time T < ∞ at which the enclosed volume becomes zero. In particular, for compact convex hypersurfaces with flat sides we show that, under a certain non-degeneracy initial condition, the interface separating the flat from the strictly convex side, becomes smooth, and it moves by the Qk-1 flow at least for a short time.
ISSN:0360-5302
1532-4133
DOI:10.1080/03605300903296314