Accurate Estimation of Gaseous Strength Using Transient Data

Information about the strength of gas sources in buildings has a number of applications in the area of building automation and control, including temperature and ventilation control, fire detection, and security systems. In this paper, we consider the problem of estimating the strength of a gas sour...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement 2011-04, Vol.60 (4), p.1197-1205
Hauptverfasser: Kar, S, Varshney, P K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Information about the strength of gas sources in buildings has a number of applications in the area of building automation and control, including temperature and ventilation control, fire detection, and security systems. In this paper, we consider the problem of estimating the strength of a gas source in an enclosure when some of the parameters of the gas transport process are unknown. Traditionally, these problems are either solved by the maximum-likelihood method, which is accurate but computationally intensive, or by recursive least squares (also Kalman) filtering, which is simpler but less accurate. In this paper, we suggest a different statistical estimation procedure based on the concept of method of moments. We outline techniques that make this procedure computationally efficient and amenable for recursive implementation. We provide a comparative analysis of our proposed method based on experimental results, as well as Monte Carlo simulations. When used with the building control systems, these algorithms can estimate the gaseous strength in a room both quickly and accurately and can potentially provide improved indoor air quality in an efficient manner.
ISSN:0018-9456
1557-9662
DOI:10.1109/TIM.2010.2084731