Spatial models of Boolean actions and groups of isometries

Given a Polish group G of isometries of a locally compact separable metric space, we prove that each measure-preserving Boolean action by G has a spatial model or, in other words, has a point realization. This result extends both a classical theorem of Mackey and a recent theorem of Glasner and Weis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ergodic theory and dynamical systems 2011-04, Vol.31 (2), p.405-421
Hauptverfasser: KWIATKOWSKA, ALEKSANDRA, SOLECKI, SŁAWOMIR
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given a Polish group G of isometries of a locally compact separable metric space, we prove that each measure-preserving Boolean action by G has a spatial model or, in other words, has a point realization. This result extends both a classical theorem of Mackey and a recent theorem of Glasner and Weiss, and it covers interesting new examples. In order to prove our result, we give a characterization of Polish groups of isometries of locally compact separable metric spaces which may be of independent interest. The solution to Hilbert’s fifth problem plays an important role in establishing this characterization.
ISSN:0143-3857
1469-4417
DOI:10.1017/S0143385709001138