A Family of Sixth-Order Compact Finite-Difference Schemes for the Three-Dimensional Poisson Equation
We derive a family of sixth-order compact finite-difference schemes for the three-dimensional Poisson's equation. As opposed to other research regarding higher-order compact difference schemes, our approach includes consideration of the discretization of the source function on a compact finite-...
Gespeichert in:
Veröffentlicht in: | Advances in Numerical Analysis 2010-01, Vol.2010 (2010), p.1-17-001 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We derive a family of sixth-order compact finite-difference schemes for the three-dimensional Poisson's equation. As opposed to other research regarding higher-order compact difference schemes, our approach includes consideration of the discretization of the source function on a compact finite-difference stencil. The schemes derived approximate the solution to Poisson's equation on a compact stencil, and thus the schemes can be easily implemented and resulting linear systems are solved in a high-performance computing environment. The resulting discretization is a one-parameter family of finite-difference schemes which may be further optimized for accuracy and stability. Computational experiments are implemented which illustrate the theoretically demonstrated truncation errors. |
---|---|
ISSN: | 1687-9562 1687-9562 |
DOI: | 10.1155/2010/352174 |