TNF-[alpha] Is a Key Regulator of MUC1, an Anti-inflammatory Molecule, during Airway Pseudomonas aeruginosa Infection

Muc1 is a heterodimeric mucin that is expressed on the apical surface of airway epithelial cells as well as hematopoietic cells. Both in vivo and in vitro studies revealed that Muc1 suppresses inflammatory responses induced by Pseudomonas aeruginosa (PA). In this study, we sought to determine, using...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of respiratory cell and molecular biology 2011-02, Vol.44 (2), p.255
Hauptverfasser: Choi, Seongwon, Park, Yong Sung, Koga, Takeshi, Treloar, Allison, Kim, Kwang Chul
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Muc1 is a heterodimeric mucin that is expressed on the apical surface of airway epithelial cells as well as hematopoietic cells. Both in vivo and in vitro studies revealed that Muc1 suppresses inflammatory responses induced by Pseudomonas aeruginosa (PA). In this study, we sought to determine, using intact animals (C57BL/6 mice), whether the expression of Muc1 is important during airway PA infection, and how Muc1 levels are controlled during inflammation. Our results showed that: (1) Muc1 levels in the wild-type (WT) mice were initially low, but gradually increased after PA inhalation, reaching a peak on Day 2, remaining elevated until Day 4, and then gradually decreasing to basal levels on Day 7; (2) TNF receptor 1(-/-) mice failed to increase Muc1 levels after PA infection; (3) after PA inhalation, more inflammatory cells were present in the bronchoalveolar lavage fluid from either Muc1(-/-) or TNF receptor(-/-) mice compared with their WT control animals; (4) more apoptotic neutrophils were present in bronchoalveolar lavage fluid from WT mice compared with Muc1(-/-) mice. We conclude that Muc1(-/-) mice are more inflammatory than WT mice during airway PA infection as a result of both an increase in neutrophil influx and a decrease in neutrophil apoptosis. These results suggest that the up-regulation of Muc1 during airway PA infection might be crucial for suppressing excessive and prolonged inflammatory responses, and is induced mainly by TNF-α, the key proinflammatory mediator.
ISSN:1535-4989