Krylov Subspace Methods for Linear Infinite-Dimensional Systems

The well-known Krylov subspace methods for model order reduction of large-scale lumped parameter systems are generalized such that they can be applied directly to a large class of linear infinite-dimensional systems including distributed parameter systems as well as delay systems. The proposed appro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2011-02, Vol.56 (2), p.441-447
Hauptverfasser: Harkort, C, Deutscher, J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The well-known Krylov subspace methods for model order reduction of large-scale lumped parameter systems are generalized such that they can be applied directly to a large class of linear infinite-dimensional systems including distributed parameter systems as well as delay systems. The proposed approach allows to derive finite-dimensional approximations of these infinite-dimensional systems without recourse to a large-scale lumped parameter approximation. The resulting finite-dimensional model has the usual property that prescribed moments of its transfer function coincide with the moments of the infinite-dimensional system. As in the finite-dimensional case the approach allows for a numerical efficient implementation. The results of the article are demonstrated by means of a simple example.
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2010.2090063