Linear Approximation and Asymptotic Expansion of Solutions in Many Small Parameters for a Nonlinear Kirchhoff Wave Equation with Mixed Nonhomogeneous Conditions

In this paper, we consider the following nonlinear Kirchhoff wave equation 1 where , , μ , f , g are given functions and To the problem (1), we associate a linear recursive scheme for which the existence of a local and unique weak solution is proved by applying the Faedo–Galerkin method and the weak...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta applicandae mathematicae 2010-11, Vol.112 (2), p.137-169
Hauptverfasser: Ngoc, Le Thi Phuong, Long, Nguyen Thanh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we consider the following nonlinear Kirchhoff wave equation 1 where , , μ , f , g are given functions and To the problem (1), we associate a linear recursive scheme for which the existence of a local and unique weak solution is proved by applying the Faedo–Galerkin method and the weak compact method. In particular, motivated by the asymptotic expansion of a weak solution in only one, two or three small parameters in the researches before now, an asymptotic expansion of a weak solution in many small parameters appeared on both sides of (1) 1 is studied.
ISSN:0167-8019
1572-9036
DOI:10.1007/s10440-009-9555-9