Vectors of two-parameter Poisson–Dirichlet processes

The definition of vectors of dependent random probability measures is a topic of interest in applications to Bayesian statistics. They represent dependent nonparametric prior distributions that are useful for modelling observables for which specific covariate values are known. In this paper we propo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of multivariate analysis 2011-03, Vol.102 (3), p.482-495
Hauptverfasser: Leisen, Fabrizio, Lijoi, Antonio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The definition of vectors of dependent random probability measures is a topic of interest in applications to Bayesian statistics. They represent dependent nonparametric prior distributions that are useful for modelling observables for which specific covariate values are known. In this paper we propose a vector of two-parameter Poisson–Dirichlet processes. It is well-known that each component can be obtained by resorting to a change of measure of a σ -stable process. Thus dependence is achieved by applying a Lévy copula to the marginal intensities. In a two-sample problem, we determine the corresponding partition probability function which turns out to be partially exchangeable. Moreover, we evaluate predictive and posterior distributions.
ISSN:0047-259X
1095-7243
DOI:10.1016/j.jmva.2010.10.008