The geochemistry of a dying continental arc: the Incapillo Caldera and Dome Complex of the southernmost Central Andean Volcanic Zone (~28°S)
The Pleistocene Incapillo Caldera and Dome Complex (5,570 m) marks the southernmost siliceous center of the Andean Central Volcanic Zone (~28°S), where the steeply dipping (~30°) segment of the subducting Nazca plate transitions into the Chilean “flatslab” to the south. The eruption of the Incapillo...
Gespeichert in:
Veröffentlicht in: | Contributions to mineralogy and petrology 2011, Vol.161 (1), p.101-128 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Pleistocene Incapillo Caldera and Dome Complex (5,570 m) marks the southernmost siliceous center of the Andean Central Volcanic Zone (~28°S), where the steeply dipping (~30°) segment of the subducting Nazca plate transitions into the Chilean “flatslab” to the south. The eruption of the Incapillo Caldera and Dome Complex began with a 3–1 Ma effusive phase characterized by ~40 rhyodacitic dome eruptions. This effusive phase was terminated by an explosive “caldera-forming” event at 0.51 Ma that produced the 14 km
3
Incapillo ignimbrite. Distinctive and virtually identical chemical signatures of the domes and ignimbrites (SiO
2
= 67–72 wt%; La/Yb = 37–56; Ba/La = 16–28; La/Ta = 30–50;
87
Sr/
86
Sr = 0.70638–0.70669;
ε
Nd
= −4.2 to −4.6) indicate that all erupted lavas originated from the same magma chamber and that differentiation effects between units were minor. The strong HREE depletion (Sm/Yb = 6–8) that distinguishes Incapillo magmas from most of the large ignimbrites of the Altiplano–Puna plateau can be explained by the extent and degree of partial melting at lower crustal depths (>40 km) in the presence of garnet. At upper crustal depths, this high-pressure residual geochemical signature, also common to adjacent late Miocene/Pliocene Pircas Negras andesites, was partially overprinted by shallow-level assimilation and fractional crystallization processes. Energy-constrained AFC modeling suggests that incorporation of anatectic upper crustal melts into a fractionated “adakite-like” dacitic host best explains the petrogenesis of Incapillo magmas. The diminution of the sub-arc asthenospheric wedge during Nazca plate shallowing left the Incapillo magma chamber unreplenished by both mafic mantle-derived and lower crustal melts and thus stranded at shallow depths within the Andean crust. Based on its small size and distinctive high-pressure chemical signature, the Incapillo Caldera and Dome Complex provides an endmember model for an Andean caldera erupting within a waning magmatic arc over a shallowing subduction zone. |
---|---|
ISSN: | 0010-7999 1432-0967 |
DOI: | 10.1007/s00410-010-0523-1 |