PERFORMANCE OF MOVING BED BIOFILM REACTORS FOR BIOLOGICAL NITROGEN COMPOUNDS REMOVAL FROM WASTEWATER BY PARTIAL NITRIFICATION-DENITRIFICATION PROCESS

In this research, the continuously operated laboratory scale Kaldnes (k1) moving bed biofilm reactors (MBBRs) under partial nitrification-denitrification process were used for treatment of synthetic wastewater containing ammonium and glucose. The Anoxic and Aerobic reactors were filled to 40 and 50...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Iranian journal of environmental health science & engineering 2010-09, Vol.7 (4), p.353
Hauptverfasser: Zafarzadeh, A, Bina, B, Nikaeen, M, Attar, H Movahedian, Nejad, M Hajian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this research, the continuously operated laboratory scale Kaldnes (k1) moving bed biofilm reactors (MBBRs) under partial nitrification-denitrification process were used for treatment of synthetic wastewater containing ammonium and glucose. The Anoxic and Aerobic reactors were filled to 40 and 50 %( v/v) to attach and retain biomass with k1 biofilm carriers, respectively. The favorite internal recycle ratio and hydraulic residence time (HRT) to eliminate nitrogen compounds were 300% of inflow rate and 20 hours, respectively. Optimal dissolved oxygen (DO) was 1-1.5 mg/L in the aerobic reactor. No sludge was returned into the system and only an internal recycling was performed from aerobic to anoxic reactor. The results showed that the maximum and average specific nitrification rate (SNR) in the aerobic reactor were 49.4 and 16.6 g NOx-N/KgVSS.day, respectively and the maximum and average specific denitrification rate (SDNR) as 156.8 and 40.1gNOx-N/KgVSS.day in the anoxic reactor, respectively. The results also showed that it is possible to reach a stable partial nitrification with high ratio of NO2-N/NOx-N (80% to 85%) during high load ammonium and low DO concentration (
ISSN:1735-1979
1735-2746