Combination of Metaheuristic and Exact Algorithms for Solving Set Covering-Type Optimization Problems
We propose a new generic framework for solving combinatorial optimization problems that can be modeled as a set covering problem. The proposed algorithmic framework combines metaheuristics with exact algorithms through a guiding mechanism based on diversification and intensification decisions. After...
Gespeichert in:
Veröffentlicht in: | INFORMS journal on computing 2010-09, Vol.22 (4), p.603-619 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose a new generic framework for solving combinatorial optimization problems that can be modeled as a set covering problem. The proposed algorithmic framework combines metaheuristics with exact algorithms through a guiding mechanism based on diversification and intensification decisions. After presenting this generic framework, we extensively demonstrate its application to the vehicle routing problem with time windows. We then conduct a thorough computational study on a set of well-known test problems, where we show that the proposed approach not only finds solutions that are very close to the best-known solutions reported in the literature, but also improves them. We finally set up an experimental design to analyze the effects of different parameters used in the proposed algorithm. |
---|---|
ISSN: | 1091-9856 1526-5528 1091-9856 |
DOI: | 10.1287/ijoc.1090.0376 |