Stationary Schrödinger equations governing electronic states of quantum dots in the presence of spin-orbit splitting
In this work we derive a pair of nonlinear eigenvalue problems corresponding to the one-band effective Hamiltonian accounting for the spin-orbit interaction governing the electronic states of a quantum dot. We show that the pair of nonlinear problems allows for the minmax characterization of its eig...
Gespeichert in:
Veröffentlicht in: | Applications of mathematics (Prague) 2007-06, Vol.52 (3), p.267-284 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work we derive a pair of nonlinear eigenvalue problems corresponding to the one-band effective Hamiltonian accounting for the spin-orbit interaction governing the electronic states of a quantum dot. We show that the pair of nonlinear problems allows for the minmax characterization of its eigenvalues under certain conditions which are satisfied for our example of a cylindrical quantum dot and the common InAs/GaAs heterojunction. Exploiting the minmax property we devise an efficient iterative projection method simultaneously handling the pair of nonlinear problems and thereby saving about 25% of the computation time as compared to the Nonlinear Arnoldi method applied to each of the problems separately.[PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0862-7940 1572-9109 |
DOI: | 10.1007/s10492-007-0014-5 |