Transfusion independence and HMGA2 activation after gene therapy of human -thalassaemia
The -haemoglobinopathies are the most prevalent inherited disorders worldwide. Gene therapy of -thalassaemia is particularly challenging given the requirement for massive haemoglobin production in a lineage-specific manner and the lack of selective advantage for corrected haematopoietic stem cells....
Gespeichert in:
Veröffentlicht in: | Nature (London) 2010-09, Vol.467 (7313), p.318-322 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The -haemoglobinopathies are the most prevalent inherited disorders worldwide. Gene therapy of -thalassaemia is particularly challenging given the requirement for massive haemoglobin production in a lineage-specific manner and the lack of selective advantage for corrected haematopoietic stem cells. Compound E/ 0-thalassaemia is the most common form of severe thalassaemia in southeast Asian countries and their diasporas. The E-globin allele bears a point mutation that causes alternative splicing. The abnormally spliced form is non-coding, whereas the correctly spliced messenger RNA expresses a mutated E-globin with partial instability. When this is compounded with a non-functional 0 allele, a profound decrease in -globin synthesis results, and approximately half of E/ 0-thalassaemia patients are transfusion-dependent. The only available curative therapy is allogeneic haematopoietic stem cell transplantation, although most patients do not have a human-leukocyte-antigen-matched, geno-identical donor, and those who do still risk rejection or graft-versus-host disease. Here we show that, 33 months after lentiviral -globin gene transfer, an adult patient with severe E/ 0-thalassaemia dependent on monthly transfusions since early childhood has become transfusion independent for the past 21 months. Blood haemoglobin is maintained between 9 and 10 g dl−1, of which one-third contains vector-encoded -globin. Most of the therapeutic benefit results from a dominant, myeloid-biased cell clone, in which the integrated vector causes transcriptional activation of HMGA2 in erythroid cells with further increased expression of a truncated HMGA2 mRNA insensitive to degradation by let-7 microRNAs. The clonal dominance that accompanies therapeutic efficacy may be coincidental and stochastic or result from a hitherto benign cell expansion caused by dysregulation of the HMGA2 gene in stem/progenitor cells. |
---|---|
ISSN: | 0028-0836 1476-4687 |
DOI: | 10.1038/nature09328 |