Asymptotic expansion of the minimum covariance determinant estimators

In Cator and Lopuhaä ( arXiv:math.ST/0907.0079) [3], an asymptotic expansion for the minimum covariance determinant (MCD) estimators is established in a very general framework. This expansion requires the existence and non-singularity of the derivative in a first-order Taylor expansion. In this pape...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of multivariate analysis 2010-11, Vol.101 (10), p.2372-2388
Hauptverfasser: Cator, Eric A., Lopuhaä, Hendrik P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In Cator and Lopuhaä ( arXiv:math.ST/0907.0079) [3], an asymptotic expansion for the minimum covariance determinant (MCD) estimators is established in a very general framework. This expansion requires the existence and non-singularity of the derivative in a first-order Taylor expansion. In this paper, we prove the existence of this derivative for general multivariate distributions that have a density and provide an explicit expression, which can be used in practice to estimate limiting variances. Moreover, under suitable symmetry conditions on the density, we show that this derivative is non-singular. These symmetry conditions include the elliptically contoured multivariate location-scatter model, in which case we show that the MCD estimators of multivariate location and covariance are asymptotically equivalent to a sum of independent identically distributed vector and matrix valued random elements, respectively. This provides a proof of asymptotic normality and a precise description of the limiting covariance structure for the MCD estimators.
ISSN:0047-259X
1095-7243
DOI:10.1016/j.jmva.2010.06.009