Effect of conversion of sugarcane plantation to forest and pasture on soil carbon in Hawaii
It is well known that land use change can affect soil C storage of terrestrial ecosystems either by altering the biotic processes involved in carbon cycling or by altering abiotic processes such as carbon adsorption on soil minerals. Relatively few studies, however, have examined the dynamics of soi...
Gespeichert in:
Veröffentlicht in: | Plant and soil 2010-10, Vol.335 (1-2), p.245-253 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is well known that land use change can affect soil C storage of terrestrial ecosystems either by altering the biotic processes involved in carbon cycling or by altering abiotic processes such as carbon adsorption on soil minerals. Relatively few studies, however, have examined the dynamics of soil C pools after conversion of farmland to forest or pasture. We selected three pairs of secondary forests and pastures that originated from the same abandoned sugarcane (interspecific hybrids of Saccharum spp.) land in the wet tropics of Hawaii to examine whether forest or pasture converted from farmland is more effective in sequestering C in soils. We compared the soil C pool, soil chemistry, and stable C isotope ratios between the forests and pastures. We found that total soil C was greater (P |
---|---|
ISSN: | 0032-079X 1573-5036 |
DOI: | 10.1007/s11104-010-0412-4 |