Submesoscale activity over the shelf of the northern South China Sea in summer: simulation with an embedded model

We applied a primitive equation ocean model to simulate submesoscale activities and processes over the shelf of the northern South China Sea (NSCS) with a one-way nesting technology for downscaling. The temperature and density fields showed that submesoscale activities were ubiquitous in the NSCS sh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese journal of oceanology and limnology 2010-09, Vol.28 (5), p.1073-1079
1. Verfasser: 刘国强 何宜军 申辉 丘仲锋
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We applied a primitive equation ocean model to simulate submesoscale activities and processes over the shelf of the northern South China Sea (NSCS) with a one-way nesting technology for downscaling. The temperature and density fields showed that submesoscale activities were ubiquitous in the NSCS shelf. The vertical velocity was considerably enhanced in submesoscale processes and could reach an average of 58 m per day in the subsurface. At this point, the mixed layer depth also was deepened along the front, and the surface kinetic energy also increased with the intense vertical movement induced by submesoscale activity. Thus, submesoscale stirring/mixing is important for tracers, such as temperature, salinity, nutrients, dissolved organic, and inorganic carbon. This result may have implication for climate and biogeochemical investigations,
ISSN:0254-4059
2096-5508
1993-5005
2523-3521
DOI:10.1007/s00343-010-0030-2