On t-entropy and variational principle for the spectral radius of weighted shift operators
In this paper we introduce a new functional invariant of discrete time dynamical systems—the so-called t-entropy. The main result is that this t-entropy is the Legendre dual functional to the logarithm of the spectral radius of the weighted shift operator on L1(X,m) generated by the dynamical system...
Gespeichert in:
Veröffentlicht in: | Ergodic theory and dynamical systems 2010-10, Vol.30 (5), p.1331-1342 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we introduce a new functional invariant of discrete time dynamical systems—the so-called t-entropy. The main result is that this t-entropy is the Legendre dual functional to the logarithm of the spectral radius of the weighted shift operator on L1(X,m) generated by the dynamical system. This result is called the variational principle and is similar to the classical variational principle for the topological pressure. |
---|---|
ISSN: | 0143-3857 1469-4417 |
DOI: | 10.1017/S0143385709000716 |