Generalizations of poly-Bernoulli numbers and polynomials
The concepts of poly-Bernoulli numbers [B.sup.(k).sub.n], poly-Bernoulli polynomials and the generalized poly-Bernoulli numbers [B.sup.(k).sub.n] (a, b) are generalized to [B.sup.(k).sub.n] (t, a, b, c) which is called the generalized poly-Bernoulli polynomials depending on real parameters a, b, c....
Gespeichert in:
Veröffentlicht in: | International journal of mathematical combinatorics 2010-07, Vol.2, p.7 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The concepts of poly-Bernoulli numbers [B.sup.(k).sub.n], poly-Bernoulli polynomials and the generalized poly-Bernoulli numbers [B.sup.(k).sub.n] (a, b) are generalized to [B.sup.(k).sub.n] (t, a, b, c) which is called the generalized poly-Bernoulli polynomials depending on real parameters a, b, c. Some properties of these polynomials and some relationships between [B.sup.(k).sub.n](t), [B.sup.(k).sub.n](t), [B.sup.(k).sub.n](a, b) and B(nk)(t, a, b, c) are established. Key Words: Poly-Bernoulli polynomial, Euler number, Euler polynomial. AMS(2000): 11B68, 11B73 |
---|---|
ISSN: | 1937-1055 1937-1047 |