Granularity and textural analysis as a proxy for extreme wave events in southeast coast of India

Extreme wave events of 1000 and 1500 years (radiocarbon ages) have been recently reported in Mahabalipuram region, southeast coast of India. Subsequently, we carried out extensive sedimenttological analysis in regions covering a total lateral coverage of 12 km with a new archeological site as the ce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Earth System Science 2010-06, Vol.119 (3), p.297-305
Hauptverfasser: Vijaya Lakshmi, C. S., Srinivasan, P., Murthy, S. G. N., Trivedi, Deshraj, Nair, Rajesh R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Extreme wave events of 1000 and 1500 years (radiocarbon ages) have been recently reported in Mahabalipuram region, southeast coast of India. Subsequently, we carried out extensive sedimenttological analysis in regions covering a total lateral coverage of 12 km with a new archeological site as the central portion of the study area. Twelve trenches in shore normal profiles exhibit landward thinning sequences as well as upward fining sequences confirming with the global signatures of extreme wave events. The sediment size ranges from fine-to-medium and moderately well sorted-to-well sorted, and exhibit positive skewness with platykurtic-to-leptokurtic nature. We now propose the abrupt winnowing or back and forth motion including unidirectional transport of these deposited sediments, which results in positive skewness. Textural analyses derived from scanning electron microscope studies (SEM) demonstrate the alteration produced, in the ilmenite mineral with vivid presence of pits and crescents with deformation observed on the surface due to extreme wave activities. This is further confirmed with the predominance of high-density mineral such as magnetite (5.2) and other heavy minerals in these deposits inferred the high-intensity of the reworking process of the beach shelf sediments.
ISSN:0253-4126
2347-4327
0973-774X
DOI:10.1007/s12040-010-0023-8