Decreased Circulating Progenitor Cell Number and Failed Mechanisms of Stromal Cell-Derived Factor-1[alpha] Mediated Bone Marrow Mobilization Impair Diabetic Tissue Repair
Progenitor cells (PCs) contribute to postnatal neovascularization and tissue repair. Here, we explore the mechanism contributing to decreased diabetic circulating PC number and propose a novel treatment to restore circulating PC number, peripheral neovascularization, and tissue healing. Cutaneous wo...
Gespeichert in:
Veröffentlicht in: | Diabetes (New York, N.Y.) N.Y.), 2010-08, Vol.59 (8), p.1974 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Progenitor cells (PCs) contribute to postnatal neovascularization and tissue repair. Here, we explore the mechanism contributing to decreased diabetic circulating PC number and propose a novel treatment to restore circulating PC number, peripheral neovascularization, and tissue healing. Cutaneous wounds were created on wild-type (C57BL/J6) and diabetic (Lepr(db/db)) mice. Blood and bone marrow PCs were collected at multiple time points. Significantly delayed wound closure in diabetic animals was associated with diminished circulating PC number (1.9-fold increase vs. 7.6-fold increase in lin(-)/sca-1(+)/ckit(+) in wild-type mice; P < 0.01), despite adequate numbers of PCs in the bone marrow at baseline (14.4 +/- 3.2% lin(-)/ckit(+)/sca1(+) vs. 13.5 +/- 2.8% in wild-type). Normal bone marrow PC mobilization in response to peripheral wounding occurred after a necessary switch in bone marrow stromal cell-derived factor-1alpha (SDF-1alpha) expression (40% reduction, P < 0.01). In contrast, a failed switch mechanism in diabetic bone marrow SDF-1alpha expression (2.8% reduction) resulted in impaired PC mobilization. Restoring the bone marrow SDF-1alpha switch (54% reduction, P < 0.01) with plerixafor (Mozobil, formerly known as AMD3100) increased circulating diabetic PC numbers (6.8 +/- 2.0-fold increase in lin(-)/ckit(+), P < 0.05) and significantly improved diabetic wound closure compared with sham-treated controls (32.9 +/- 5.0% vs. 11.9 +/- 3% at day 7, P > 0.05; 73.0 +/- 6.4% vs. 36.5 +/- 7% at day 14, P < 0.05; and 88.0 +/- 5.7% vs. 66.7 +/- 5% at day 21, P > 0.05, respectively). Successful ischemia-induced bone marrow PC mobilization is mediated by a switch in bone marrow SDF-1alpha levels. In diabetes, this switch fails to occur. Plerixafor represents a potential therapeutic agent for improving ischemia-mediated pathology associated with diabetes by reducing bone marrow SDF-1alpha, restoring normal PC mobilization and tissue healing. |
---|---|
ISSN: | 0012-1797 1939-327X |