Increased [Beta]-Cell Mass by Islet Transplantation and PLAG1 Overexpression Causes Hyperinsulinemic Normoglycemia and Hepatic Insulin Resistance in Mice

It is believed that an organism remains normoglycemic despite an increase in the beta-cell mass because of decreased insulin production by beta-cells on a per-cell basis. However, some transgenic mouse models with beta-cell hyperplasia suggest that insulin production remains excessive and that normo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diabetes (New York, N.Y.) N.Y.), 2010-08, Vol.59 (8), p.1957
Hauptverfasser: Declercq, Jeroen, Kumar, Anujith, Van Diepen, Janna A, Vroegrijk, Irene O C M, Gysemans, Conny, Di Pietro, Caterina, Voshol, Peter J, Mathieu, Chantal, Ectors, Nadine, Van de Ven, Wim J M, Verfaillie, Catherine M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is believed that an organism remains normoglycemic despite an increase in the beta-cell mass because of decreased insulin production by beta-cells on a per-cell basis. However, some transgenic mouse models with beta-cell hyperplasia suggest that insulin production remains excessive and that normoglycemia is maintained by insulin resistance. Here, we investigated the effect of an increased beta-cell mass on glycemia and insulin resistance by grafting excess normal islets in normoglycemic mice, as well as using targeted PLAG1 expression in beta-cells, which leads to beta-cell expansion. In both models, fasting plasma insulin levels were increased, even though animals were normoglycemic. After an intraperitoneal glucose tolerance test, plasma insulin levels increased, which was associated with improved glucose clearing. Under these conditions, normoglycemia is maintained by hepatic insulin resistance as demonstrated by hyperinsulinemic euglycemic clamp experiments. In conclusion, we demonstrate that when excess beta-cells are grafted, insulin production on a per beta-cell basis is not sufficiently decreased, leading to hyperinsulinemia and hepatic insulin resistance. This observation might be important for the design of stem cell-based islet replacement therapies.
ISSN:0012-1797
1939-327X