The plecomacrolide vacuolar-ATPase inhibitor bafilomycin, alters insulin signaling in MIN6 [beta]-cells

Inhibition of endosomal acidification disturbs insulin signaling in both liver and adipose cells. In this study we used MIN6 β cells to determine whether bafilomycin, a potent inhibitor of the proton-translocating vacuolar ATPase, disrupts insulin signaling in islet β cells. Pretreatment of MIN6 cel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell biology and toxicology 2006-05, Vol.22 (3), p.169
Hauptverfasser: Hettiarachchi, K D, Zimmet, P Z, Myers, M A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Inhibition of endosomal acidification disturbs insulin signaling in both liver and adipose cells. In this study we used MIN6 β cells to determine whether bafilomycin, a potent inhibitor of the proton-translocating vacuolar ATPase, disrupts insulin signaling in islet β cells. Pretreatment of MIN6 cells with varying concentrations of bafilomycin according to a time course revealed concentration and time-dependent changes in phosphorylation of insulin receptor signaling components. Increased phosphorylation of insulin receptor (IR), IRS2 and Akt was prolonged at low bafilomycin concentrations (10 and 50 nmol/L), whereas at high concentrations (100 and 200 nmol/L) phosphorylation rapidly returned to basal levels or below. Akt activation was demonstrated by transient increases in phosphorylation of BAD, cytoplasmic retention of FoxO1 and increased preproinsulin mRNA. Bcl2 expression was also transiently increased but reduced after 30 min exposure to bafilomycin, and this coincided with reduced cell viability. Thus, in β cells inhibition of endosomal acidification by low concentrations of bafilomycin transiently increases insulin signaling, whereas high concentrations promote cell death. Bafilomycin and other agents that interfere with insulin signaling may contribute to diabetes development through disturbing homeostatic control of β cell growth.[PUBLICATION ABSTRACT]
ISSN:0742-2091
1573-6822
DOI:10.1007/s10565-006-0054-8