Slant column measurements of O3 and NO2 during the NDSC intercomparison of zenith-sky UV-visible spectrometers in June 1996
In June 1996, 16 UV-visible sensors from 11 institutes measured spectra of the zenith sky for more than 10 days. Spectra were analysed in real-time to determine slant column amounts of O3 and NO2. Spectra of Hg lamps and lasers were measured, and the amount of NO2 in a cell was determined by each sp...
Gespeichert in:
Veröffentlicht in: | Journal of atmospheric chemistry 1999-02, Vol.32 (2), p.281-314 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In June 1996, 16 UV-visible sensors from 11 institutes measured spectra of the zenith sky for more than 10 days. Spectra were analysed in real-time to determine slant column amounts of O3 and NO2. Spectra of Hg lamps and lasers were measured, and the amount of NO2 in a cell was determined by each spectrometer. Some spectra were re-analysed after obvious errors were found. Slant columns were compared in two ways: by examining regression analyses against comparison instruments over the whole range of solar zenith angles; and by taking fractional differences from a comparison instrument at solar zenith angles between 85° and 91°. Regression identified which pairs of instruments were most consistent, and so which could be used as universal comparison instruments. For O3, regression slopes for the whole campaign agreed within 5% for most instruments despite the use of different cross-sections and wavelength intervals, whereas similar agreement was only achieved for NO2 when the same cross-sections and wavelength intervals were used and only one half-day's data was analysed. Mean fractional differences in NO2 from a comparison instrument fall within ±7% (1-sigma) for most instruments, with standard deviations of the mean differences averaging 4.5%. Mean differences in O3 fall within ±2.5% (1- sigma) for most instruments, with standard deviations of the mean differences averaging 2%. Measurements of NO2 in the cell had similar agreement to measurements of NO2 in the atmosphere, but for some instruments measurements with cell and atmosphere relative to a comparison instrument disagreed by more than the error bars.[PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0167-7764 1573-0662 |
DOI: | 10.1023/A:1006111216966 |