Affinity P2P: A self-organizing content-based localityaware collaborative peer-to-peer network
The last years have brought a dramatic increase in the popularity of collaborative Web 2.0 sites. According to recent evaluations, this phenomenon accounts for a large share of Internet traffic and significantly augments the load on the end-servers of Web 2.0 sites. In this paper, we show how collab...
Gespeichert in:
Veröffentlicht in: | Computer networks (Amsterdam, Netherlands : 1999) Netherlands : 1999), 2010-08, Vol.54 (12), p.2056 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The last years have brought a dramatic increase in the popularity of collaborative Web 2.0 sites. According to recent evaluations, this phenomenon accounts for a large share of Internet traffic and significantly augments the load on the end-servers of Web 2.0 sites. In this paper, we show how collaborative classifications extracted from Web 2.0-like sites can be leveraged in the design of a self-organizing peer-to-peer network in order to distribute data in a scalable manner while preserving a high-content locality. We propose Affinity P2P (AP2P), a novel cluster-based locality-aware self-organizing peer-to-peer network. AP2P self-organizes in order to improve content locality using a novel affinity-based metric for estimating the distance between clusters of nodes sharing similar content. Searches in AP2P are directed to the cluster of interests, where a logarithmic-time parallel flooding algorithm provides high recall, low latency, and low communication overhead. The order of clusters is periodically changed using a greedy cluster placement algorithm, which reorganizes clusters based on affinity in order to increase the locality of related content. The experimental and analytical results demonstrate that the locality-aware cluster-based organization of content offers substantial benefits, achieving an average latency improvement of 45%, and up to 12% increase in search recall. [PUBLICATION ABSTRACT] |
---|---|
ISSN: | 1389-1286 1872-7069 |