The FFT moving average (FFT-MA) generator : An efficient numerical method for generating and conditioning Gaussian simulations

A fast Fourier transform (FFT) moving average (FFT-MA) method for generating Gaussian stochastic processes is derived. Using discrete Fourier transforms makes the calculations easy and fast so that large random fields can be produced. On the other hand, the basic moving average frame allows us to un...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical geology 2000-08, Vol.32 (6), p.701-723
Hauptverfasser: LE RAVALEC, M, NOETINGER, B, HU, L. Y
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 723
container_issue 6
container_start_page 701
container_title Mathematical geology
container_volume 32
creator LE RAVALEC, M
NOETINGER, B
HU, L. Y
description A fast Fourier transform (FFT) moving average (FFT-MA) method for generating Gaussian stochastic processes is derived. Using discrete Fourier transforms makes the calculations easy and fast so that large random fields can be produced. On the other hand, the basic moving average frame allows us to uncouple the random numbers from the structural parameters (mean, variance, correlation length, ... ), but also to draw the randomness components in spatial domain. Such features impart great flexibility to the FFT-MA generator. For instance, changing only the random numbers gives distinct realizations all having the same covariance function. Similarly, several realizations can be built from the same random number set, but from different structural parameters. Integrating the FFT-MA generator into an optimization procedure provides a tool theoretically capable to determine the random numbers identifying the Gaussian field as well as the structural parameters from dynamic data. Moreover, all or only some of the random numbers can be perturbed so that realizations produced using the FFT-MA generator can be locally updated through an optimization process.[PUBLICATION ABSTRACT]
doi_str_mv 10.1023/A:1007542406333
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_journals_728546849</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2092819911</sourcerecordid><originalsourceid>FETCH-LOGICAL-a324t-f31b9a2c10c3de492246cb54abc15f9519ed860f377e584e2d5a4b5852f2c5943</originalsourceid><addsrcrecordid>eNotj89LwzAAhYMoOKdnr0E86KGan02yWxluChMv9VzSNNky1nQm7cCLf7ud7vTg4-M9HgC3GD1hROhzMcMICc4IQzml9AxMMBc0kzKX52CCpCSZxARfgquUtgghKRSfgJ9yY-FiUcK2O_iwhvpgo15b-DCy7L14hGsbRtJ3Ec5gEaB1zhtvQw_D0Nrojd7B1vabroFudE72X1NooOlC43vfhSNY6iElrwNMvh12-ojTNbhwepfszSmn4HPxUs5fs9XH8m1erDJNCeszR3GtNDEYGdpYpghhuak507XB3CmOlW1kjhwVwnLJLGm4ZjWXnDhiuGJ0Cu7-e_ex-xps6qttN8QwTlaCSM5yydQo3Z8kncZfLupgfKr20bc6fleYCczznP4CrMts2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>728546849</pqid></control><display><type>article</type><title>The FFT moving average (FFT-MA) generator : An efficient numerical method for generating and conditioning Gaussian simulations</title><source>SpringerNature Journals</source><creator>LE RAVALEC, M ; NOETINGER, B ; HU, L. Y</creator><creatorcontrib>LE RAVALEC, M ; NOETINGER, B ; HU, L. Y</creatorcontrib><description>A fast Fourier transform (FFT) moving average (FFT-MA) method for generating Gaussian stochastic processes is derived. Using discrete Fourier transforms makes the calculations easy and fast so that large random fields can be produced. On the other hand, the basic moving average frame allows us to uncouple the random numbers from the structural parameters (mean, variance, correlation length, ... ), but also to draw the randomness components in spatial domain. Such features impart great flexibility to the FFT-MA generator. For instance, changing only the random numbers gives distinct realizations all having the same covariance function. Similarly, several realizations can be built from the same random number set, but from different structural parameters. Integrating the FFT-MA generator into an optimization procedure provides a tool theoretically capable to determine the random numbers identifying the Gaussian field as well as the structural parameters from dynamic data. Moreover, all or only some of the random numbers can be perturbed so that realizations produced using the FFT-MA generator can be locally updated through an optimization process.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 0882-8121</identifier><identifier>ISSN: 1874-8961</identifier><identifier>EISSN: 1573-8868</identifier><identifier>EISSN: 1874-8953</identifier><identifier>DOI: 10.1023/A:1007542406333</identifier><identifier>CODEN: MATGED</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Fourier transforms ; Hydrocarbons ; Numbers ; Sedimentary rocks ; Stratigraphy ; Studies</subject><ispartof>Mathematical geology, 2000-08, Vol.32 (6), p.701-723</ispartof><rights>2000 INIST-CNRS</rights><rights>International Association for Mathematical Geology 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a324t-f31b9a2c10c3de492246cb54abc15f9519ed860f377e584e2d5a4b5852f2c5943</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1471566$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>LE RAVALEC, M</creatorcontrib><creatorcontrib>NOETINGER, B</creatorcontrib><creatorcontrib>HU, L. Y</creatorcontrib><title>The FFT moving average (FFT-MA) generator : An efficient numerical method for generating and conditioning Gaussian simulations</title><title>Mathematical geology</title><description>A fast Fourier transform (FFT) moving average (FFT-MA) method for generating Gaussian stochastic processes is derived. Using discrete Fourier transforms makes the calculations easy and fast so that large random fields can be produced. On the other hand, the basic moving average frame allows us to uncouple the random numbers from the structural parameters (mean, variance, correlation length, ... ), but also to draw the randomness components in spatial domain. Such features impart great flexibility to the FFT-MA generator. For instance, changing only the random numbers gives distinct realizations all having the same covariance function. Similarly, several realizations can be built from the same random number set, but from different structural parameters. Integrating the FFT-MA generator into an optimization procedure provides a tool theoretically capable to determine the random numbers identifying the Gaussian field as well as the structural parameters from dynamic data. Moreover, all or only some of the random numbers can be perturbed so that realizations produced using the FFT-MA generator can be locally updated through an optimization process.[PUBLICATION ABSTRACT]</description><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Fourier transforms</subject><subject>Hydrocarbons</subject><subject>Numbers</subject><subject>Sedimentary rocks</subject><subject>Stratigraphy</subject><subject>Studies</subject><issn>0882-8121</issn><issn>1874-8961</issn><issn>1573-8868</issn><issn>1874-8953</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNotj89LwzAAhYMoOKdnr0E86KGan02yWxluChMv9VzSNNky1nQm7cCLf7ud7vTg4-M9HgC3GD1hROhzMcMICc4IQzml9AxMMBc0kzKX52CCpCSZxARfgquUtgghKRSfgJ9yY-FiUcK2O_iwhvpgo15b-DCy7L14hGsbRtJ3Ec5gEaB1zhtvQw_D0Nrojd7B1vabroFudE72X1NooOlC43vfhSNY6iElrwNMvh12-ojTNbhwepfszSmn4HPxUs5fs9XH8m1erDJNCeszR3GtNDEYGdpYpghhuak507XB3CmOlW1kjhwVwnLJLGm4ZjWXnDhiuGJ0Cu7-e_ex-xps6qttN8QwTlaCSM5yydQo3Z8kncZfLupgfKr20bc6fleYCczznP4CrMts2w</recordid><startdate>20000801</startdate><enddate>20000801</enddate><creator>LE RAVALEC, M</creator><creator>NOETINGER, B</creator><creator>HU, L. Y</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>3V.</scope><scope>7SC</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20000801</creationdate><title>The FFT moving average (FFT-MA) generator : An efficient numerical method for generating and conditioning Gaussian simulations</title><author>LE RAVALEC, M ; NOETINGER, B ; HU, L. Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a324t-f31b9a2c10c3de492246cb54abc15f9519ed860f377e584e2d5a4b5852f2c5943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Fourier transforms</topic><topic>Hydrocarbons</topic><topic>Numbers</topic><topic>Sedimentary rocks</topic><topic>Stratigraphy</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LE RAVALEC, M</creatorcontrib><creatorcontrib>NOETINGER, B</creatorcontrib><creatorcontrib>HU, L. Y</creatorcontrib><collection>Pascal-Francis</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Mathematical geology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LE RAVALEC, M</au><au>NOETINGER, B</au><au>HU, L. Y</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The FFT moving average (FFT-MA) generator : An efficient numerical method for generating and conditioning Gaussian simulations</atitle><jtitle>Mathematical geology</jtitle><date>2000-08-01</date><risdate>2000</risdate><volume>32</volume><issue>6</issue><spage>701</spage><epage>723</epage><pages>701-723</pages><issn>0882-8121</issn><issn>1874-8961</issn><eissn>1573-8868</eissn><eissn>1874-8953</eissn><coden>MATGED</coden><abstract>A fast Fourier transform (FFT) moving average (FFT-MA) method for generating Gaussian stochastic processes is derived. Using discrete Fourier transforms makes the calculations easy and fast so that large random fields can be produced. On the other hand, the basic moving average frame allows us to uncouple the random numbers from the structural parameters (mean, variance, correlation length, ... ), but also to draw the randomness components in spatial domain. Such features impart great flexibility to the FFT-MA generator. For instance, changing only the random numbers gives distinct realizations all having the same covariance function. Similarly, several realizations can be built from the same random number set, but from different structural parameters. Integrating the FFT-MA generator into an optimization procedure provides a tool theoretically capable to determine the random numbers identifying the Gaussian field as well as the structural parameters from dynamic data. Moreover, all or only some of the random numbers can be perturbed so that realizations produced using the FFT-MA generator can be locally updated through an optimization process.[PUBLICATION ABSTRACT]</abstract><cop>Heidelberg</cop><pub>Springer</pub><doi>10.1023/A:1007542406333</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0882-8121
ispartof Mathematical geology, 2000-08, Vol.32 (6), p.701-723
issn 0882-8121
1874-8961
1573-8868
1874-8953
language eng
recordid cdi_proquest_journals_728546849
source SpringerNature Journals
subjects Earth sciences
Earth, ocean, space
Exact sciences and technology
Fourier transforms
Hydrocarbons
Numbers
Sedimentary rocks
Stratigraphy
Studies
title The FFT moving average (FFT-MA) generator : An efficient numerical method for generating and conditioning Gaussian simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T02%3A30%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20FFT%20moving%20average%20(FFT-MA)%20generator%20:%20An%20efficient%20numerical%20method%20for%20generating%20and%20conditioning%20Gaussian%20simulations&rft.jtitle=Mathematical%20geology&rft.au=LE%20RAVALEC,%20M&rft.date=2000-08-01&rft.volume=32&rft.issue=6&rft.spage=701&rft.epage=723&rft.pages=701-723&rft.issn=0882-8121&rft.eissn=1573-8868&rft.coden=MATGED&rft_id=info:doi/10.1023/A:1007542406333&rft_dat=%3Cproquest_pasca%3E2092819911%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=728546849&rft_id=info:pmid/&rfr_iscdi=true