The FFT moving average (FFT-MA) generator : An efficient numerical method for generating and conditioning Gaussian simulations
A fast Fourier transform (FFT) moving average (FFT-MA) method for generating Gaussian stochastic processes is derived. Using discrete Fourier transforms makes the calculations easy and fast so that large random fields can be produced. On the other hand, the basic moving average frame allows us to un...
Gespeichert in:
Veröffentlicht in: | Mathematical geology 2000-08, Vol.32 (6), p.701-723 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 723 |
---|---|
container_issue | 6 |
container_start_page | 701 |
container_title | Mathematical geology |
container_volume | 32 |
creator | LE RAVALEC, M NOETINGER, B HU, L. Y |
description | A fast Fourier transform (FFT) moving average (FFT-MA) method for generating Gaussian stochastic processes is derived. Using discrete Fourier transforms makes the calculations easy and fast so that large random fields can be produced. On the other hand, the basic moving average frame allows us to uncouple the random numbers from the structural parameters (mean, variance, correlation length, ... ), but also to draw the randomness components in spatial domain. Such features impart great flexibility to the FFT-MA generator. For instance, changing only the random numbers gives distinct realizations all having the same covariance function. Similarly, several realizations can be built from the same random number set, but from different structural parameters. Integrating the FFT-MA generator into an optimization procedure provides a tool theoretically capable to determine the random numbers identifying the Gaussian field as well as the structural parameters from dynamic data. Moreover, all or only some of the random numbers can be perturbed so that realizations produced using the FFT-MA generator can be locally updated through an optimization process.[PUBLICATION ABSTRACT] |
doi_str_mv | 10.1023/A:1007542406333 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_journals_728546849</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2092819911</sourcerecordid><originalsourceid>FETCH-LOGICAL-a324t-f31b9a2c10c3de492246cb54abc15f9519ed860f377e584e2d5a4b5852f2c5943</originalsourceid><addsrcrecordid>eNotj89LwzAAhYMoOKdnr0E86KGan02yWxluChMv9VzSNNky1nQm7cCLf7ud7vTg4-M9HgC3GD1hROhzMcMICc4IQzml9AxMMBc0kzKX52CCpCSZxARfgquUtgghKRSfgJ9yY-FiUcK2O_iwhvpgo15b-DCy7L14hGsbRtJ3Ec5gEaB1zhtvQw_D0Nrojd7B1vabroFudE72X1NooOlC43vfhSNY6iElrwNMvh12-ojTNbhwepfszSmn4HPxUs5fs9XH8m1erDJNCeszR3GtNDEYGdpYpghhuak507XB3CmOlW1kjhwVwnLJLGm4ZjWXnDhiuGJ0Cu7-e_ex-xps6qttN8QwTlaCSM5yydQo3Z8kncZfLupgfKr20bc6fleYCczznP4CrMts2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>728546849</pqid></control><display><type>article</type><title>The FFT moving average (FFT-MA) generator : An efficient numerical method for generating and conditioning Gaussian simulations</title><source>SpringerNature Journals</source><creator>LE RAVALEC, M ; NOETINGER, B ; HU, L. Y</creator><creatorcontrib>LE RAVALEC, M ; NOETINGER, B ; HU, L. Y</creatorcontrib><description>A fast Fourier transform (FFT) moving average (FFT-MA) method for generating Gaussian stochastic processes is derived. Using discrete Fourier transforms makes the calculations easy and fast so that large random fields can be produced. On the other hand, the basic moving average frame allows us to uncouple the random numbers from the structural parameters (mean, variance, correlation length, ... ), but also to draw the randomness components in spatial domain. Such features impart great flexibility to the FFT-MA generator. For instance, changing only the random numbers gives distinct realizations all having the same covariance function. Similarly, several realizations can be built from the same random number set, but from different structural parameters. Integrating the FFT-MA generator into an optimization procedure provides a tool theoretically capable to determine the random numbers identifying the Gaussian field as well as the structural parameters from dynamic data. Moreover, all or only some of the random numbers can be perturbed so that realizations produced using the FFT-MA generator can be locally updated through an optimization process.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 0882-8121</identifier><identifier>ISSN: 1874-8961</identifier><identifier>EISSN: 1573-8868</identifier><identifier>EISSN: 1874-8953</identifier><identifier>DOI: 10.1023/A:1007542406333</identifier><identifier>CODEN: MATGED</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Fourier transforms ; Hydrocarbons ; Numbers ; Sedimentary rocks ; Stratigraphy ; Studies</subject><ispartof>Mathematical geology, 2000-08, Vol.32 (6), p.701-723</ispartof><rights>2000 INIST-CNRS</rights><rights>International Association for Mathematical Geology 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a324t-f31b9a2c10c3de492246cb54abc15f9519ed860f377e584e2d5a4b5852f2c5943</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1471566$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>LE RAVALEC, M</creatorcontrib><creatorcontrib>NOETINGER, B</creatorcontrib><creatorcontrib>HU, L. Y</creatorcontrib><title>The FFT moving average (FFT-MA) generator : An efficient numerical method for generating and conditioning Gaussian simulations</title><title>Mathematical geology</title><description>A fast Fourier transform (FFT) moving average (FFT-MA) method for generating Gaussian stochastic processes is derived. Using discrete Fourier transforms makes the calculations easy and fast so that large random fields can be produced. On the other hand, the basic moving average frame allows us to uncouple the random numbers from the structural parameters (mean, variance, correlation length, ... ), but also to draw the randomness components in spatial domain. Such features impart great flexibility to the FFT-MA generator. For instance, changing only the random numbers gives distinct realizations all having the same covariance function. Similarly, several realizations can be built from the same random number set, but from different structural parameters. Integrating the FFT-MA generator into an optimization procedure provides a tool theoretically capable to determine the random numbers identifying the Gaussian field as well as the structural parameters from dynamic data. Moreover, all or only some of the random numbers can be perturbed so that realizations produced using the FFT-MA generator can be locally updated through an optimization process.[PUBLICATION ABSTRACT]</description><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Fourier transforms</subject><subject>Hydrocarbons</subject><subject>Numbers</subject><subject>Sedimentary rocks</subject><subject>Stratigraphy</subject><subject>Studies</subject><issn>0882-8121</issn><issn>1874-8961</issn><issn>1573-8868</issn><issn>1874-8953</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNotj89LwzAAhYMoOKdnr0E86KGan02yWxluChMv9VzSNNky1nQm7cCLf7ud7vTg4-M9HgC3GD1hROhzMcMICc4IQzml9AxMMBc0kzKX52CCpCSZxARfgquUtgghKRSfgJ9yY-FiUcK2O_iwhvpgo15b-DCy7L14hGsbRtJ3Ec5gEaB1zhtvQw_D0Nrojd7B1vabroFudE72X1NooOlC43vfhSNY6iElrwNMvh12-ojTNbhwepfszSmn4HPxUs5fs9XH8m1erDJNCeszR3GtNDEYGdpYpghhuak507XB3CmOlW1kjhwVwnLJLGm4ZjWXnDhiuGJ0Cu7-e_ex-xps6qttN8QwTlaCSM5yydQo3Z8kncZfLupgfKr20bc6fleYCczznP4CrMts2w</recordid><startdate>20000801</startdate><enddate>20000801</enddate><creator>LE RAVALEC, M</creator><creator>NOETINGER, B</creator><creator>HU, L. Y</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>3V.</scope><scope>7SC</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20000801</creationdate><title>The FFT moving average (FFT-MA) generator : An efficient numerical method for generating and conditioning Gaussian simulations</title><author>LE RAVALEC, M ; NOETINGER, B ; HU, L. Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a324t-f31b9a2c10c3de492246cb54abc15f9519ed860f377e584e2d5a4b5852f2c5943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Fourier transforms</topic><topic>Hydrocarbons</topic><topic>Numbers</topic><topic>Sedimentary rocks</topic><topic>Stratigraphy</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LE RAVALEC, M</creatorcontrib><creatorcontrib>NOETINGER, B</creatorcontrib><creatorcontrib>HU, L. Y</creatorcontrib><collection>Pascal-Francis</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Mathematical geology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LE RAVALEC, M</au><au>NOETINGER, B</au><au>HU, L. Y</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The FFT moving average (FFT-MA) generator : An efficient numerical method for generating and conditioning Gaussian simulations</atitle><jtitle>Mathematical geology</jtitle><date>2000-08-01</date><risdate>2000</risdate><volume>32</volume><issue>6</issue><spage>701</spage><epage>723</epage><pages>701-723</pages><issn>0882-8121</issn><issn>1874-8961</issn><eissn>1573-8868</eissn><eissn>1874-8953</eissn><coden>MATGED</coden><abstract>A fast Fourier transform (FFT) moving average (FFT-MA) method for generating Gaussian stochastic processes is derived. Using discrete Fourier transforms makes the calculations easy and fast so that large random fields can be produced. On the other hand, the basic moving average frame allows us to uncouple the random numbers from the structural parameters (mean, variance, correlation length, ... ), but also to draw the randomness components in spatial domain. Such features impart great flexibility to the FFT-MA generator. For instance, changing only the random numbers gives distinct realizations all having the same covariance function. Similarly, several realizations can be built from the same random number set, but from different structural parameters. Integrating the FFT-MA generator into an optimization procedure provides a tool theoretically capable to determine the random numbers identifying the Gaussian field as well as the structural parameters from dynamic data. Moreover, all or only some of the random numbers can be perturbed so that realizations produced using the FFT-MA generator can be locally updated through an optimization process.[PUBLICATION ABSTRACT]</abstract><cop>Heidelberg</cop><pub>Springer</pub><doi>10.1023/A:1007542406333</doi><tpages>23</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0882-8121 |
ispartof | Mathematical geology, 2000-08, Vol.32 (6), p.701-723 |
issn | 0882-8121 1874-8961 1573-8868 1874-8953 |
language | eng |
recordid | cdi_proquest_journals_728546849 |
source | SpringerNature Journals |
subjects | Earth sciences Earth, ocean, space Exact sciences and technology Fourier transforms Hydrocarbons Numbers Sedimentary rocks Stratigraphy Studies |
title | The FFT moving average (FFT-MA) generator : An efficient numerical method for generating and conditioning Gaussian simulations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T02%3A30%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20FFT%20moving%20average%20(FFT-MA)%20generator%20:%20An%20efficient%20numerical%20method%20for%20generating%20and%20conditioning%20Gaussian%20simulations&rft.jtitle=Mathematical%20geology&rft.au=LE%20RAVALEC,%20M&rft.date=2000-08-01&rft.volume=32&rft.issue=6&rft.spage=701&rft.epage=723&rft.pages=701-723&rft.issn=0882-8121&rft.eissn=1573-8868&rft.coden=MATGED&rft_id=info:doi/10.1023/A:1007542406333&rft_dat=%3Cproquest_pasca%3E2092819911%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=728546849&rft_id=info:pmid/&rfr_iscdi=true |