The FFT moving average (FFT-MA) generator : An efficient numerical method for generating and conditioning Gaussian simulations

A fast Fourier transform (FFT) moving average (FFT-MA) method for generating Gaussian stochastic processes is derived. Using discrete Fourier transforms makes the calculations easy and fast so that large random fields can be produced. On the other hand, the basic moving average frame allows us to un...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical geology 2000-08, Vol.32 (6), p.701-723
Hauptverfasser: LE RAVALEC, M, NOETINGER, B, HU, L. Y
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A fast Fourier transform (FFT) moving average (FFT-MA) method for generating Gaussian stochastic processes is derived. Using discrete Fourier transforms makes the calculations easy and fast so that large random fields can be produced. On the other hand, the basic moving average frame allows us to uncouple the random numbers from the structural parameters (mean, variance, correlation length, ... ), but also to draw the randomness components in spatial domain. Such features impart great flexibility to the FFT-MA generator. For instance, changing only the random numbers gives distinct realizations all having the same covariance function. Similarly, several realizations can be built from the same random number set, but from different structural parameters. Integrating the FFT-MA generator into an optimization procedure provides a tool theoretically capable to determine the random numbers identifying the Gaussian field as well as the structural parameters from dynamic data. Moreover, all or only some of the random numbers can be perturbed so that realizations produced using the FFT-MA generator can be locally updated through an optimization process.[PUBLICATION ABSTRACT]
ISSN:0882-8121
1874-8961
1573-8868
1874-8953
DOI:10.1023/A:1007542406333