Variogram model selection via nonparametric derivative estimation

Before optimal linear prediction can be performed on spatial data sets, the variogram is usually estimated at various lags and a parametric model is fitted to those estimates. Apart from possible a priori knowledge about the process and the user's subjectivity, there is no standard methodology...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical geology 2000-04, Vol.32 (3), p.249-270
Hauptverfasser: GORSICH, D. J, GENTON, M. G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Before optimal linear prediction can be performed on spatial data sets, the variogram is usually estimated at various lags and a parametric model is fitted to those estimates. Apart from possible a priori knowledge about the process and the user's subjectivity, there is no standard methodology for choosing among valid variogram models like the spherical or the exponential ones. This paper discusses the nonparametric estimation of the variogram and its derivative, based on the spectral representation of positive definite functions. The use of the estimated derivative to help choose among valid parametric variogram models is presented. Once a model is selected, its parameters can be estimated--for example, by generalized least squares. A small simulation study is performed that demonstrates the usefulness of estimating the derivative to help model selection and illustrates the issue of aliasing. MATLAB software for nonparametric variogram derivative estimation is available at http://www-math.mit.edu/~gorsich/derivative.html. An application to the Walker Lake data set is also presented.[PUBLICATION ABSTRACT]
ISSN:0882-8121
1874-8961
1573-8868
1874-8953
DOI:10.1023/A:1007563809463