Indomethacin Corrects Alterations Associated with Ischemia/Reperfusion in an in vitro Proximal Tubular Model
Background/Aims: Recent in vivo data indicate that indomethacin improves renal outcome after ischemia via improvement of renal cell survival and function. To examine direct effects of indomethacin on isolated proximal tubular cells, we investigated the influence of indomethacin on markers of ischemi...
Gespeichert in:
Veröffentlicht in: | American journal of nephrology 2010-01, Vol.32 (1), p.57-65 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background/Aims: Recent in vivo data indicate that indomethacin improves renal outcome after ischemia via improvement of renal cell survival and function. To examine direct effects of indomethacin on isolated proximal tubular cells, we investigated the influence of indomethacin on markers of ischemia/reperfusion (I/R) damage in an established in vitro model of ischemia and reperfusion. Methods: Ischemia was applied for 2 h followed by reperfusion for up to 48 h. Indomethacin was added at the beginning of reperfusion. Parameters were investigated after 6, 24 or 48 h of reperfusion. Results: Indomethacin diminished cell death by necrosis and apoptosis, release of prostaglandin E 2 , induction of I/R-induced protein, dedifferentiation or induction of inducible nitric oxide synthase. Moreover, indomethacin totally prevented the ischemia-induced inhibition of basolateral organic anion transport. Indomethacin did not affect ischemia-mediated induction of nuclear factor-ĸB or monocyte chemoattractant protein 1. Ischemia did not induce matrix protein synthesis. Conclusions: We have shown that: (a) indomethacin applied after ischemia has a beneficial effect on proximal tubule cell survival after model ischemia and impairs changes of parameters characteristically induced by ischemia via direct action on proximal tubule cells; (b) the inflammatory response of proximal tubule cells was not affected by indomethacin, and (c) fibrosis does not take place after model ischemia in isolated proximal tubule cells. |
---|---|
ISSN: | 0250-8095 1421-9670 |
DOI: | 10.1159/000313452 |