On the ellipsoidal correction to the spherical Stokes solution of the gravimetric geoid

The solutions of four ellipsoidal approximations for the gravimetric geoid are reviewed: those of Molodenskii et al., Moritz, Martinec and Grafarend, and Fei and Sideris. The numerical results from synthetic tests indicate that Martinec and Grafarend's solution is the most accurate, while the o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geodesy 2003-06, Vol.77 (3-4), p.171-181
Hauptverfasser: HUANG, J, VERONNEAU, M, PAGIATAKIS, S. D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The solutions of four ellipsoidal approximations for the gravimetric geoid are reviewed: those of Molodenskii et al., Moritz, Martinec and Grafarend, and Fei and Sideris. The numerical results from synthetic tests indicate that Martinec and Grafarend's solution is the most accurate, while the other three solutions contain an approximation error which is characterized by the first-degree surface spherical harmonic. Furthermore, the first 20 degrees of the geopotential harmonic series contribute approximately 90% of the ellipsoidal correction. The determination of a geoid model from the generalized Stokes scheme can accurately account for the ellipsoidal effect to overcome the first-degree surface spherical harmonic error regardless of the solution used.[PUBLICATION ABSTRACT]
ISSN:0949-7714
1432-1394
DOI:10.1007/s00190-003-0317-6