Signal Detection Theory and Generalized Linear Models

Generalized linear models are a general class of regressionlike models for continuous and categorical response variables. Signal detection models can be formulated as a subclass of generalized linear models, and the result is a rich class of signal detection models based on different underlying dist...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Psychological methods 1998-06, Vol.3 (2), p.186-205
1. Verfasser: DeCarlo, Lawrence T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Generalized linear models are a general class of regressionlike models for continuous and categorical response variables. Signal detection models can be formulated as a subclass of generalized linear models, and the result is a rich class of signal detection models based on different underlying distributions. An example is a signal detection model based on the extreme value distribution. The extreme value model is shown to yield unit slope receiver operating characteristic (ROC) curves for several classic data sets that are commonly given as examples of normal or logistic ROC curves with slopes that differ from unity. The result is an additive model with a simple interpretation in terms of a shift in the location of an underlying distribution. The models can also be extended in several ways, such as to recognize response dependencies, to include random coefficients, or to allow for more general underlying probability distributions.
ISSN:1082-989X
1939-1463
DOI:10.1037/1082-989X.3.2.186