An Adaptive Approach to Human Decision Making: Learning Theory, Decision Theory, and Human Performance
This article describes a general model of decision rule learning, the rule competition model, composed of 2 parts: an adaptive network model that describes how individuals learn to predict the payoffs produced by applying each decision rule for any given situation and a hill-climbing model that desc...
Gespeichert in:
Veröffentlicht in: | Journal of experimental psychology. General 1992-06, Vol.121 (2), p.177-194 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This article describes a general model of decision rule learning, the rule competition model, composed of 2 parts: an adaptive network model that describes how individuals learn to predict the payoffs produced by applying each decision rule for any given situation and a hill-climbing model that describes how individuals learn to fine tune each rule by adjusting its parameters. The model was tested and compared with other models in 3 experiments on probabilistic categorization. The first experiment was designed to test the adaptive network model using a probability learning task, the second was designed to test the parameter search process using a criterion learning task, and the third was designed to test both parts of the model simultaneously by using a task that required learning both category rules and cutoff criteria. |
---|---|
ISSN: | 0096-3445 1939-2222 |
DOI: | 10.1037/0096-3445.121.2.177 |