Miocene tectonics of the Maramures area (Northern Romania): implications for the Mid-Hungarian fault zone
The interplay between the emplacement of crustal blocks (e.g. “ALCAPA”, “Tisza”, “Dacia”) and subduction retreat is a key issue for understanding the Miocene tectonic history of the Carpathians. Coeval thrusting and basin formation is linked by transfer zones, such as the Mid-Hungarian fault zone, w...
Gespeichert in:
Veröffentlicht in: | International journal of earth sciences : Geologische Rundschau 2007-06, Vol.96 (3), p.473-496 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The interplay between the emplacement of crustal blocks (e.g. “ALCAPA”, “Tisza”, “Dacia”) and subduction retreat is a key issue for understanding the Miocene tectonic history of the Carpathians. Coeval thrusting and basin formation is linked by transfer zones, such as the Mid-Hungarian fault zone, which seperates ALCAPA from Tisza-Dacia. The presented study provides new kinematic data from this transfer zone. Early Burdigalian (20.5 to ∼18.5 Ma) SE-directed thrusting of the easternmost tip of ALCAPA (Pienides), over Tisza-Dacia is linked to movements along the Mid-Hungarian fault zone and the Periadriatic line, accommodating the lateral extrusion of ALCAPA. Minor Late Burdigalian (∼18.5 to 16 Ma) NE-SW extension is interpreted as related to back-arc extension. Post Burdigalian (post-16 Ma) NE–SW shortening and NW–SE extension correlate with “soft collision” of Tisza-Dacia with the European foreland coupled with southward migration of active subduction. During this stage the Bogdan-Voda and Dragos-Voda faults were kinematically linked to the Mid-Hungarian fault zone. Sinistral transpression (16 to 12 Ma) at the Bogdan-Voda fault was followed by sinistral transtension (12–10 Ma) along the coupled Bogdan-Dragos-Voda fault system. During the transtensional stage left-lateral offset was reduced eastwards by SW trending normal faults, the fault system finally terminating in an extensional horse-tail splay. |
---|---|
ISSN: | 1437-3254 1437-3262 |
DOI: | 10.1007/s00531-006-0110-x |