Bayesian modeling and inference for geometrically anisotropic spatial data
A geometrically anisotropic spatial process can be viewed as being a linear transformation of an isotropic spatial process. Customary semivariogram estimation techniques often involve ad hoc selection of the linear transformation to reduce the region to isotropy and then fitting a valid parametric s...
Gespeichert in:
Veröffentlicht in: | Mathematical geology 1999, Vol.31 (1), p.67-83 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A geometrically anisotropic spatial process can be viewed as being a linear transformation of an isotropic spatial process. Customary semivariogram estimation techniques often involve ad hoc selection of the linear transformation to reduce the region to isotropy and then fitting a valid parametric semivariogram to the data under the transformed coordinates. We propose a Bayesian methodology which simultaneously estimates the linear transformation and the other semivariogram parameters. In addition, the Bayesian paradigm allows full inference for any characteristic of the geometrically anisotropic model rather than merely providing a point estimate. Our work is motivated by a dataset of scallop catches in the Atlantic Ocean in 1990 and also in 1993. The 1990 data provide useful prior information about the nature of the anisotropy of the process. Exploratory data analysis (EDA) techniques such as directional empirical semivariograms and the rose diagram are widely used by practitioners. We recommend a suitable contour plot to detect departures from isotropy. We then present a fully Bayesian analysis of the 1993 scallop data, demonstrating the range of inferential possibilities.[PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0882-8121 1874-8961 1573-8868 1874-8953 |
DOI: | 10.1023/A:1007593314277 |